

Федеральное агентство морского и речного транспорта

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Государственный университет морского и речного флота имени адмирала С.О. Макарова» Воронежский филиал ФГБОУ ВО «ГУМРФ имени адмирала С.О. Макарова»

Кафедра математики, информационных систем и технологий

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Основы квантовой информатики» (приложение к рабочей программе дисциплины)

Направление подготовки <u>09.03.02 И</u>	Інформационные системы и технологи
Направленность (профиль) - Инфор	омационные системы на транспорте
паправленность (профиль) <u>инфо</u> р	эмационные системы на транспорте
Уровень высшего образования	бакалавриат
Форма обучения	очная, заочная

1. Перечень компетенций и этапы их формирования в процессе освоения дисциплины

Таблица 1 Планируемые результаты обучения по дисциплине

Код и наименование	Код индикатора дости-	Планируемые результаты обучения по
компетенции	жения компетенции	дисциплине
ОПК-2 Способен по-	ОПК-2.3 Применение	Знать: основные направления развития
нимать принципы ра-	основных методов ис-	исследований в области систем искус-
боты современных	кусственного интеллек-	ственного интеллекта, виды интеллекту-
информационных тех-	та в последующей про-	альных систем, экспертные системы; ос-
нологий и программ-	фессиональной дея-	новные приемы моделирования слож-
ных средств, в том	тельности	ных естественных и искусственных си-
числе отечественного		стем
производства, и ис-		Уметь: использовать основные методы
пользовать их при ре-		искусственного интеллекта в последу-
шении задач профес-		ющей профессиональной деятельности в
сиональной деятель-		области моделирования и анализа слож-
ности		ных естественных и искусственных си-
		стем
		Владеть: навыками использования ос-
		новных методов искусственного интел-
		лекта в последующей профессиональ-
		ной деятельности.

2. Паспорт фонда оценочных средств для проведения текущей и промежуточной аттестации обучающихся

Таблица 2 Оценочные средства для проведения текущей и промежуточной аттестации обучающихся

№ π/π	Наименование раздела (темы) дисциплины	Формируемая компетенция	Наименование оценочного средства
1	Основные понятия квантовой теории информации.	ОПК-2	Тестирование, зачет
2	Описание состояний. Чистые, смешанные и запутанные состояния в теории квантовой информации	ОПК-2	Тестирование, зачет
3	Информационная энтропия. Связь энтропии и информации	ОПК-2	Тестирование, зачет
4	Передача квантовой информации	ОПК-2	Тестирование, зачет
5	Роль неклассических полей в теории квантовой информации. Квантовая теория поля	ОПК-2	Тестирование, зачет
6	Вопрос измерения. Квантовые алгоритмы	ОПК-2	Тестирование, зачет
7	Классические и квантовые вероятностные модели	ОПК-2	Тестирование, зачет
8	Квантовый компьютер.	ОПК-2	Тестирование, зачет

Таблица 3 Критерии оценивания результата обучения по дисциплине и шкала оценивания по дисциплине

Результат обуче- ния			Процедура оценивания		
по дисциплине	2	3	4	5	
	Не зачтено		Зачтено		
ОПК-2.3	Отсутствие	Неполные	Сформирован-	Сформиро-	Тестирова-
Знать: основ-	или фрагмен-	представле-	ные, но со-	ванные си-	ние, зачет
ные направле-	тарные пред-	ния об	держащие	стематиче-	
ния развития	ставления об	основных	отдельные	ские пред-	
исследований в	основных	направлениях	пробелы пред-	ставления	
области систем	направлениях	развития ис-	ставления об	об	
	развития ис-	следований в	основных	основных	
искусственно-	следований в	области си-	направлениях	направлени-	
го интеллекта,	области си-	стем искус-	развития ис-	ях развития	
виды интел-	стем искус-	ственного	следований в	исследова-	
лектуальных	ственного ин-	интеллекта,	области си-	ний в обла-	
систем, экс-	теллекта, ви-	видах интел-	стем искус-	сти систем	
пертные си-	дах интеллек-	лектуальных	ственного	искусствен-	
стемы; основ-	туальных си-	систем, экс-	интеллекта,	ного интел-	
ные приемы	стем, эксперт-	пертных си-	видах интел-	лекта, видах	
моделирования	ных систем;	стем; основ-	лектуальных	интеллек-	
сложных есте-	основных прие-	ных приемах	систем, экс-	туальных	
ственных и ис-	мах моделиро-	моделирова-	пертных си-	систем, экс-	
	вания сложных	ния сложных	стем; основ-	пертных си-	
кусственных	естественных	естественных	ных приемах	стем; ос-	
систем	и искусствен-	и искусствен-	моделирова-	новных при-	
	ных систем	ных систем	ния сложных	емах моде-	
			естественных	лирования	
			и искусствен-	сложных	
			ных систем	естествен-	
				ных и искус-	
				ственных	
				систем	
ОПК-2.3	Отсутствие	В целом удо-	В целом удо-	Сформиро-	Тестирова-
Уметь: исполь-	умений или	влетвори-	влетвори-	ванные уме-	ние, зачет
зовать основ-	фрагментар-	тельные, но	тельные, но	ния исполь-	
ные методы	ные умения ис-	не система-	содержащие	зовать ос-	
искусственно-	пользовать ос-	тизированные	отдельные	новные ме-	
го интеллекта	новные методы	умения ис-	пробелы уме-	тоды искус-	
в последую-	искусственного	пользовать	ния использо-	ственного	
щей професси-	интеллекта в	основные ме-	вать основ-	интеллекта	
	последующей	тоды искус-	ные методы	в последую-	
ональной дея-	профессио-	ственного	искусственно-	щей профес-	
тельности в	нальной дея-	интеллекта в	го интеллек-	сиональной	
области моде-	тельности в	последующей	та в последу-	деятельно-	
лирования и	области моде-	профессио-	ющей профес-	сти в обла-	
анализа слож-	лирования и	нальной дея-	сиональной	сти модели-	
ных естествен-	анализа слож-	тельности в	деятельности	рования и	
ных и искус-	ных есте-	области мо-	в области мо-	анализа	
ственных си-	ственных и ис-	делирования и	делирования и	сложных	
стем	кусственных	анализа	анализа	естествен-	
	систем	сложных	сложных	ных и искус-	
		естественных	естественных	ственных	
		и искусствен-	и искусствен-	систем	
		ных систем	ных систем		
ОПК-2.3	Отсутствие	В целом удо-	В целом удо-	Сформиро-	Тестирова-

Владеть: навы-	владения или	влетвори-	влетвори-	ванные вла-	ние, зачет
ками исполь-	фрагментарные	тельные, но	тельные, но	дения	
зования основ-	владения навы-	не система-	содержащие	навыками	
ных методов	ками использо-	тизированные	отдельные	использова-	
искусственно-	вания основных	навыки ис-	пробелы	ния основ-	
го интеллекта	методов искус-	пользования	навыки ис-	ных мето-	
в последую-	ственного ин-	основных ме-	пользования	дов искус-	
, ,,	теллекта в по-	тодов искус-	основных ме-	ственного	
щей професси-	следующей	ственного	тодов искус-	интеллекта	
ональной дея-	профессио-	интеллекта в	ственного	в последую-	
тельности	нальной дея-	последующей	интеллекта в	щей профес-	
	тельности	профессио-	последующей	сиональной	
		нальной дея-	профессио-	деятельно-	
		тельности	нальной дея-	сти	
			тельности		

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ

Tecm

Тема 1: Основные понятия квантовой теории информации

1. Открытый тип

Объясните, в чем состоит принципиальное отличие классического бита от квантового кубита с точки зрения возможных состояний и операций над ними.

2. Выбор одного варианта

- *Что описывает состояние кубита $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$?*
- а) Вероятность нахождения в состоянии |0 у или |1 у
- б) Амплитуду вероятности нахождения в базисных состояниях
- в) Энергию кубита
- г) Время жизни кубита

3. Выбор 2-3 вариантов

Какие из следующих утверждений о кубитах верны?

- а) Кубит может находиться в суперпозиции состояний
- б) Состояние кубита можно скопировать без изменений (теорема о запрете клонирования)
- в) При измерении кубит всегда переходит в состояние |0 у или |1 у
- г) Кубит может хранить бесконечное количество информации

4. Установление последовательности

Этапы эволюции закрытой квантовой системы:

- 1. Приготовление начального состояния
- 2. Унитарная эволюция по уравнению Шрёдингера
- 3. Измерение конечного состояния
- 4. Получение вероятностного результата

5. Соответствие

Соответствие между понятиями и определениями:

Понятие Определение

1. Кубит А. Преобразование, сохраняющее норму вектора состояния

Понятие Определение

- 2. Суперпозиция Б. Наименьший элемент квантовой информации
- 3. Унитарное преобразование В. Линейная комбинация базисных состояний

Тема 2: Чистые, смешанные и запутанные состояния

1. Открытый тип

Что такое запутанность (quantum entanglement) и почему она является важным ресурсом в квантовой информатике?

2. Выбор одного варианта

Когда система описывается смешанным состоянием?

- а) Когда она находится в суперпозиции состояний
- б) Когда есть классическая вероятность нахождения в разных чистых состояниях
- в) Когда она запутана с другой системой
- г) Когда её состояние точно известно

3. Выбор 2-3 вариантов

Какие состояния являются запутанными?

a)
$$|\psi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$$

$$δ$$
) $|ψ\rangle = |01\rangle$

B)
$$|\psi\rangle = (|00\rangle + |01\rangle)/\sqrt{2}$$

$$\Gamma$$
) $|\psi\rangle = (|00\rangle + |11\rangle + |01\rangle)/\sqrt{3}$

4. Установление последовательности

Этапы создания запутанной пары:

- 1. Приготовление двух кубитов в состоянии |00)
- 2. Применение гейта Адамара к первому кубиту
- 3. Применение гейта СПОТ
- 4. Получение состояния Белла

5. Соответствие

Соответствие типов состояний и их свойств:

Тип состояния Свойство

1. Чистое А. Описывается статистическим ансамблем

2. Смешанное Б. Имеет ранг матрицы плотности равный 1

3. Запутанное В. Не может быть разделено на подсистемы

Тема 3: Информационная энтропия

1. Открытый тип

В чем состоит физический смысл энтропии фон Неймана и как она связана с количеством информации в квантовой системе?

2. Выбор одного варианта

- *Для какого состояния энтропия фон Неймана $S(\rho) = 0$?*
- а) Смешанного состояния
- б) Максимально запутанного состояния
- в) Чистого состояния

г) Термического состояния

3. Выбор 2-3 вариантов

В каких случаях энтропия фон Неймана увеличивается?

- а) При измерении квантовой системы
- б) При унитарной эволюции
- в) При декогеренции
- г) При очищении состояния

4. Установление последовательности

Этапы вычисления энтропии фон Неймана:

- 1. Нахождение матрицы плотности р
- 2. Диагонализация матрицы р
- 3. Вычисление собственных значений λ_i
- 4. Pacчet $S(\rho) = -\Sigma \lambda_i \log_2 \lambda_i$

5. Соответствие

Соответствие видов энтропии и их определений:

Энтропия Определение
 Шеннона А. Мера неопределенности квантового состояния
 фон Неймана Б. Мера классической неопределенности
 Взаимная В. Мера корреляции между системами

Тема 4: Передача квантовой информации

1. Открытый тип

Опишите принцип квантовой телепортации и почему она не нарушает теорему о запрете клонирования?

2. Выбор одного варианта

Что необходимо для реализации квантовой телепортации?

- а) Один кубит и классический канал связи
- б) Два запутанных кубита и квантовый канал
- в) Один запутанный кубит и классический канал
- г) Два запутанных кубита и классический канал

3. Выбор 2-3 вариантов

Какие из следующих утверждений о квантовой телепортации верны?

- а) Состояние оригинала разрушается при телепортации
- б) Информация передается со скоростью света
- в) Можно телепортировать состояние неизвестного кубита
- г) Телепортация позволяет мгновенно передавать информацию

4. Установление последовательности

Этапы протокола квантовой телепортации:

- 1. Создание запутанной пары между Алисой и Бобом
- 2. Алиса выполняет измерение Белла на своем кубите и кубите для телепортации
- 3. Алиса передает результаты измерений Бобу по классическому каналу
- 4. Боб применяет соответствующие унитарные преобразования
- 5. Восстановление состояния у Боба

5. Соответствие

Соответствие методов передачи и их характеристик:

Метод Характеристика

1. Классическая передача А. Требует запутанных состояний

2. Квантовая телепортация Б. Прямая передача кубитов

3. Квантовая связь В. Передача битов по обычным каналам

Тема 5: Роль неклассических полей

1. Открытый тип

Какие типы неклассических состояний света вы знаете и какие их свойства важны для квантовой информатики?

2. Выбор одного варианта

Что характеризует сжатое (squeezed) состояние света?

- а) Уменьшенные флуктуации в одной из квадратур
- б) Увеличенная интенсивность
- в) Постоянная фаза
- г) Отсутствие фотонов

3. Выбор 2-3 вариантов

Какие из следующих состояний являются неклассическими?

- а) Когерентные состояния
- б) Сжатые состояния
- в) Термические состояния
- г) Состояния с отрицательной Wigner-функцией

4. Установление последовательности

Этапы создания сжатого состояния:

- 1. Приготовление когерентного состояния
- 2. Нелинейное взаимодействие в среде
- 3. Параметрическое усиление Генерация сжатого света

5. Соответствие

Соответствие состояний поля и их свойств:

Состояние Свойство

1. Когерентное А. Минимальные неопределенности по обеим квадратурам

2. Сжатое Б. Пониженные флуктуации в одной квадратуре

3. Термическое В. Положительно определенная Р-функция

Тема 6: Вопрос измерения

1. Открытый тип

B чем состоит проблема квантового измерения и как она решается в различных интерпретациях квантовой механики?

2. Выбор одного варианта

Что происходит с квантовой системой при измерении?

- а) Унитарная эволюция
- б) Проекция на собственное состояние оператора
- в) Обратимое преобразование
- г) Усиление сигнала

3. Выбор 2-3 вариантов

Какие из следующих утверждений о квантовых измерениях верны?

- а) Измерение разрушает суперпозицию
- б) Результат измерения всегда детерминирован
- в) Возможны слабые измерения
- г) Измерение можно отменить

4. Установление последовательности

Этапы процесса измерения:

- 1. Взаимодействие системы с измерительным прибором
- 2. Возникновение корреляции
- 3. Редукция волновой функции
- 4. Фиксация результата

5. Соответствие

Соответствие типов измерений и их свойств:

Тип измерения Свойство

- 1. Проекционное А. Частичное получение информации
- 2. Слабое Б. Полное коллапсирование состояния
- 3. Квантовое немешающее В. Измерение без возмущения системы

Тема 7: Классические и квантовые вероятностные модели

1. Открытый тип

В чем состоят принципиальные различия между классической и квантовой вероятностными моделями?

2. Выбор одного варианта

Что является отличительной особенностью квантовой вероятности?

- а) Наличие интерференции
- б) Нормировка на единицу
- в) Неотрицательность
- г) Аддитивность

3. Выбор 2-3 вариантов

Какие явления возможны в квантовой вероятности, но невозможны в классической?

- а) Нарушение неравенств Белла
- б) Принцип суперпозиции
- в) Теорема Байеса
- г) Интерференция амплитуд вероятности

4. Установление последовательности

Этапы проверки нарушения неравенств Белла:

1. Подготовка запутанных пар

- 2. Измерение корреляций при разных ориентациях
- 3. Вычисление параметра S
- 4. Сравнение с классическим пределом

5. Соответствие

Соответствие концепций и их областей:

Концепция Область

1. Теорема Байеса А. Классическая вероятность

2. Принцип суперпозиции Б. Квантовая вероятность

3. Неравенства Белла В. Разграничение классического и квантового

Тема 8: Квантовый компьютер

1. Открытый тип

Какие основные физические реализации квантовых компьютеров вы знаете и в чем их пре-имущества/недостатки?

2. Выбор одного варианта

Что такое "квантовое превосходство"?

- а) Преимущество квантовых алгоритмов над классическими
- б) Доказательство работоспособности квантового компьютера
- в) Решение конкретной задачи быстрее классического суперкомпьютера
- г) Создание универсального квантового компьютера

3. Выбор 2-3 вариантов

Какие из перечисленных проблем являются основными для квантовых вычислений?

- а) Декогеренция
- б) Ошибки измерений
- в) Высокое энергопотребление
- г) Низкая скорость операций

4. Установление последовательности

Этапы квантового вычисления:

- 1. Инициализация кубитов
- 2. Применение квантовой схемы (унитарных преобразований)
- 3. Выполнение измерений
- 4. Интерпретация результатов

5. Соответствие

Соответствие алгоритмов и их назначения:

Алгоритм Назначение

1. Алгоритм Шора А. Поиск в неструктурированной базе

2. Алгоритм Гровера Б. Факторизация чисел

3. Алгоритм Дойча-Йожи В. Проверка свойств функций

Показатели и шкала оценивания тестовых заданий

Томиная аттостомия	Количество баллов	Шкала	
Текущая аттестация	Количество баллов	оценивания	
выполнение требований по текущей ат-	90% - 100%		
тестации в полном объеме	80% - 89%	DOMESTIC	
выполнение требований по текущей ат-	60% - 79%	зачтено	
тестации в неполном объеме	00% - 79%		
невыполнение требований по текущей	менее 60%	HO DOMESTIC	
аттестации	менее 00%	не зачтено	

Перевод набранных при тестировании баллов в оценку производится в соответствии с Положением о фондах оценочных средств для проведения текущего контроля, промежуточной аттестации и государственной итоговой аттестации обучающихся по программам высшего образования.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Промежуточная аттестация – зачет Вопросы к зачету

- 1. Что такое кубит и чем он отличается от классического бита?
- 2. Что означает принцип суперпозиции состояний?
- 3. Какие базовые операции можно выполнять над кубитами? (Назовите 2-3 примера).
- 4. Какое состояние называется чистым? Приведите пример.
- 5. Что такое запутанность (квантовая entanglement)?
- 6. В чем разница между запутанным и смешанным состоянием?
- 7. Что измеряет энтропия Шеннона в классической теории информации?
- 8. Что характеризует энтропия фон Неймана в квантовой теории?
- 9. Для какого состояния энтропия фон Неймана равна нулю?
- 10.В чем состоит основной принцип квантовой телепортации?
- 11. Почему при квантовой телепортации необходим классический канал связи?
- 12. Что такое "теорема о запрете клонирования" и почему она важна?
- 13. Что такое сжатые состояния света и чем они полезны?
- 14. Какие состояния света называются неклассическими? (Назовите 1-2 примера).
- 15. Где могут применяться неклассические состояния в квантовых технологиях?
- 16. Что происходит с квантовой системой в процессе измерения?
- 17.В чем состоит основная идея алгоритма Гровера?
- 18. Какую задачу решает алгоритм Шора?
- 19.В чем главное отличие квантовой вероятности от классической?
- 20. Что демонстрирует нарушение неравенств Белла?
- 21. Что такое квантовая интерференция?
- 22. Что такое "квантовое превосходство"?

- 23. Назовите основные проблемы, мешающие созданию больших квантовых компьютеров. (2-3 примера).
- 24. Какие физические системы могут использоваться для реализации кубитов? (Назовите 2-3 примера).

Критерии оценки ответов на зачете

Таблица 6

Критерии оценивания

№ п/п	Критерии оценивания	Результат
1	Обучаемый не смог ответить на поставленные вопросы	не зачтено
2	Обучаемый верно ответил на поставленные вопросы	зачтено

При обучении с применением дистанционных технологий и электронного обучения промежуточная аттестация проводится в форме компьютерного тестирования в СДО. Оценивание компетентности обучающегося по установленным для дисциплины индикаторам может осуществляться с помощью банка заданий, включающих тестовые задания пяти типов:

- 1 тестовое задание открытого типа; предусматривающее развернутый ответ обучающегося в нескольких предложениях, составленное с использованием вопросов для подготовки к зачету или экзамену;
- 2 выбор одного правильного варианта из предложенных вариантов ответов:
- 3 выбор 2-3 правильных вариантов из предложенных вариантов ответов;
- 4 установление правильной последовательности в предложенных вариантах ответов/расчётные задачи, ответом на которые будет являться некоторое числовое значение;
- 5 установление соответствия между двумя множествами вариантов ответов.

Компетенция: ОПК-2 Способен понимать принципы работы современных информационных технологий и программных средств, в том числе отечественного производства, и использовать их при решении задач профессиональной деятельности

Индикатор: ОПК-2.3 Применение основных методов искусственного интеллекта в последующей профессиональной деятельности

Тип задания	Примеры тестовых заданий	
1	Объясните принципиальное различие между запутанным (entangled) и сме- шанным (mixed) состоянием в квантовой информатике. Приведите по одно- му примеру применения каждого из этих состояний.	
2	Какое из перечисленных утверждений о квантовой энтропии фон Неймана $S(\rho) = -Tr(\rho \log \rho)$ является BEPHЫМ?	

	T > n	
		на всегда равна нулю для чистых состояний
		на уменьшается при измерении квантовой системы
		на максимальна для чистых состояний
	1	на не определена для смешанных состояний
	Правильный ответ: а	
3	Какие из следующих уз ВИЛЬНЫМИ? (Выбер	гверждений о квантовых алгоритмах являются ПРА- ите 2-3 варианта)
		оляет эффективно решать задачу факторизации больших
	б) Алгоритм Гровера обрированного поиска	еспечивает квадратичное ускорение для задач неструкту-
	в) Квантовые алгоритмь сравнению с классическ	и всегда обеспечивают экспоненциальное ускорение по ими
	г) Для работы квантовы: ность	х алгоритмов необходима только классическая вероят-
	д) Алгоритм Дойча-Йож ленного класса задач	ки демонстрирует квантовое превосходство для опреде-
4	информации в протоко 1. Алиса выполняет	тю последовательность этапов передачи квантовой оле квантовой телепортации: т измерение Белла над парой кубитов (передаваемым и запутанной пары)
	2. Боб применяет со	з запутанной пары) оответствующую унитарную операцию к своему кубиту еляют запутанную пару кубитов
	4. Алиса передает Б лу	обу результаты своего измерения по классическому кана-
	5. Состояние исход.	ного кубита воспроизводится у Боба
5	Установите соответств ристиками:	ие между типами квантовых состояний и их характе-
	Множество A (Тип состояния)	Множество Б (Характеристика)
	1. Чистое состояние	А. Описывается матрицей плотности с рангом > 1
	2. Смешанное состояние	Б. Не может быть представлено как тензорное произведение состояний подсистем
	3. Запутанное состояние	В. Описывается единичным вектором в гильбертовом пространстве
		Г. Возникает в результате декогеренции
		Д. Имеет энтропию фон Неймана равную 0

Составитель: к.ф.-м.н., доцент Черняева С. Н.

Зав. кафедрой: к.ф.-м.н., доцент Черняева С. Н.